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THE QUASI-TWO-DIMENSIONAL APPROXIMATION IN THE PROBLEM 

OF STATIONARY SUBSONIC FLOW OVER A THREE-DIMENSIONAL 

ANNULAR BLADE ROW 

V. P. Ryabchenko UDC 532.5:621.22 

Subsonic flows in axial compressors are usually studied on the basis of a plane or axi- 
symmetric theory of blade rows. Results obtained using these approximations do not give an 
adequate description of three-dimensional flow, however~ In a number of reports [1-3] at- 
tempts are made to determine the corrections to these approximate theories allowing for the 
three-dimensional character of the flow under certain limiting assumptions. Irrotational 
flow over an annular blade row was analyzed in [I], the inverse problem of blade-row theory 
was solved in [2], and in [3] a two-dimensional approximation was obtained from a three- 
dimensional theory based on the use of an acceleration potential. Nevertheless, there is no 
clear procedure for estimating the relative contributions of the effects which are not taken 
into account by the plane theory. In particular, allowance for the variation of the Mach 
number over the height of a blade can prove important for modern compressors. 

In the present report a two-dimensional approximation is obtained from the three-dimen- 
sional theory of a nonbearing surface in the limiting case of an infinitely large number of 
blades and a hub ratio close to one~ 

I. We shall consider the subsonic adiabatic flow of an ideal gas through one blade row 
rotating with a constant angular velocity m in an infinite channel between two coaxial cylin- 
ders (see Fig. i). The absolute motion of the gas near this annular blade row will be taken 
as potential. We introduce a moving coordinate system Oxyz, which rotates about the axis of 
the cylinders with an angular velocity ~ and the x axis of which coincides with the axis of 
rotation. In this coordinate system the Cauchy--Lagrange integral can be written in the form 
[4] 

q-K + 2 L\o~] +ta~l ~ --~ a-~1 ~-~wP=Y(~), (i.i) 

where ~ is the velocity potential of the absolute motion of the gas; a prime denotes time dif- 
ferentiation in the moving coordinate system; F(t) is an arbitrary function of time; 
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Fig. i 

/ 1/v. • 

, adiabatic index; p�9 pressure; p~ and p~, gas pressure and density in the undisturbed 

stream. In this case the continuity equation has the form 

i I I 0 p o t  - -  o~ 'Jp /Oy  - c  o)yOp/az  div (pV~) = 0. ( 1 . 2 )  

We s h a l l  s e e k  t h e  s o l u t i o n  o f  Eqs .  ( 1 . )  and ( 1 , 2 )  i n  t h e  fo rm P = ~ - ~  Pt ,  P = P ~  - b p ~ ,  Vx 
= v~ -~ v~:~, v,j = v~, vz = v'1:�9 where v = V ~ , v~ is the axial velocity of the undisturbed stream, 
and the quantities Px, P~, and v~ are small compared with the parameters of the undisturbed 

stream. 

We introduce a cylindrical coordinate system x, r, 0 in which y = r cos e and z = r sin 
6. Then the continuity equation and the Cauchy-Lagrange integral for the disturbed gas mo- 
tion take the form 

Opt (c)vir 1 i Ovi n. Ov~x I O~ a'p~ + + p. ~ v~, -? ! q- = 0; (i. 3) 
a-T ~ g  \ T r  r 7 ao a=] v |  

p~. ~'% v |  _ co ~o~" p| - ~ -- (1.4) 

Linearization of the adiabatic equation gives the relation Px = a~px, where a~ is the speed 
of sound in the undisturbed stream. Substituting this expression and Eq. (1.4) into Eq. 

(1.3)�9 we obtain 

o"%q_ t 0% , 1 ~176 ~ 9'~~176162 " o% 9 ~  2a%oto= , 

Or" - dr T ":" - -  " ~ Oz" a~o Or" r: , 00' ~:' 0~o0 + i - -  - -  - - _  0. ( 1 . 5 )  

Thus, the investigation of the disturbed potential gas flow near a three-dimensional annular 
blade row comes down to the solution of the linear differential equation (1.5). 

2. Now let us assume that the gas flow is established�9 and perform a stretching trans- 
formation along the x coordinate (x + x/B). Then�9 dropping the index i�9 from Eq. (1.5) we 
obtain 

A~ = a \-oxoo v~  o02J ' ( 2 . 1 )  

where ~ = Ma~/v=B; B 2 = I -- M2; M = v~/a~ is the axial Mach number. 
be written in the form 

div U = 0. 

if we introduce the vector U with the components 

U = = ~ - - o Y 8 - '  U r : = ~ 7 '  U ~ 1 7 6  

Equation (2.1) can also 

(2.2) 

( 2 . 3 )  

A green's equation can be obtained for a function ~ satisfying Eq. (2.2) in a certain 
region ~. For this we introduce a certain function f having continuous second derivatives 
and we construct a vector W from Eqs. (2.3) in which we replace ~ by f. We integrate the dif- 
ference 

227 



over the volume ~. 

/ div U - -  q) div W = div (/'U) - -  div ((pW) 

Using the Gauss-Ostrogradskii equation, we obtain 

.[ (1 div U - -  (p div W) d.Q = S (/U -- q~W) ndS, 

.q S 

where S is the surface bounding the volume fl; n = (nx, nr, n o ) is the outward normal to this 
surface. 

Now let f = G(x -- y) be the fundamental solution of Eq. 42.1). Here x = (x, r, 0) and 
y = (~, p, ~). Then for points x ~  we have the representation 

= ~0+o(%--~), (2.4) 

where 
f I . ,  o,~ , eG~, . .  

8 

fs lOG + / iJa 

% =  G ~n,+plo~ "* ~).r 

Next, we calculate the velocity vector v = V g using the Green's equation (2.4). We have 

V% = [ [V.~G (n. Vv) ~ --  q (n. Vv) V:,G] dS, y ~_ S. ( 2 . 5 )  

Taking into account the relations 

(n.vv)(~V.~:G) : q~(n.vv)v.~G + v.~G(n-vvqD), 

n :~ (vxG X Vv~) .... VxG(n.vvq) -- Vv(~(n.vxG), 
Vv~ ,'< (n >: v.~G) == n (vvq~-va .G) -  vxG(n'vvq~), 

we write 

V.~.G0*- VvV) - -  (~(n. Vv)V.~G : - -  (n. Vv)0l,v.~G) 

+ n  X (vxG >', VvqD)--Vv~ • (n X vxG) + VvCF( n ' v x  G) + n ( V v ~ ' v x G )  �9 

By virtue of the equalities vxG = --vvG and rot (V G) = 0 

n •  rot  v(qDv~G) = n • (VvV X v~G). 

S i n c e  

we have 

n div v(ePv~G) = n[v~G.Vvq~ + V div  y(v~G)], 

42.6) 

(2.7) 

n(vxG.vvqp ) n d iv  y(q~vxG) -- V n div v(vxG)- 

As a c o n s e q u e n c e  o f  the relations Ay((PvxG)= Vv (divy (q~vxG)) -  rot  u rotv (q0VxG) 
v G ( v . n )  = - - v ( n . v  G) - - v  X (VG • n) , f r o m  ( 2 . 5 ) - ( 2 . 8 ) ,  a f t e r  a p p l y i n g  t h e  G a u s s - - O s t r o g r a d s k i i  
e q u a t i o n ,  we g e t  

V% = - -  f [ ( n • 2 1 5  + (n .v)  VvG - -  qmAvG ] dS. 
S 

(2.8) 

( v , :  n) • V G -  

For the function Vq~ I we have 

V0vxo 
Vq) 1 ----- 

s [ 0r 
dS. 
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Applying the Gauss--Ostrogradskii equation with allowance for the relation vxG =--vuG and 
returning to integration over the surface S~ we find 

S [ 0 [ Oa\ O/ Oa mf3oa)]dS y [o0 [o0 mf3oa,~ ] 

Then calculating Vcp2 and using Eq. (2.1) we arrive at the equation sought 

v(x)=-- -  [(nXv)XV~G+(n.v)V~GldS--a n v~?---~+pv, N (2.9) 
8 

._ co_~ oa' dS + cr v n~ + O + ~ ~ ]  ~, dS + a oVyG v.,:,n~+ 
! Ut ~ S 8 

-}- ( t'g -4- m~O v--~ v,) , 'Z,]  dS,. 

where v~ and v~ are the components of the velocity vector v in the cylindrical coordinate sys- 
tem at the point y. 

The integral representation (2.9) was obtained for an arbitrary point x lying inside the 
region ~. We note that in the ease of the problem of flow over a thin body it retains the 
same form if the integration is carried out over one side of the surface of this body, while 
the vector v is replaced by its jump [v] in the transition through this surface and one uses 
the fact that [v.n] = 0. Here it is convenient to introduce the vector intensity y = n x 
[v] of the vortex sheet (the surface curl). Then for M = 0 and G = i/Ix- Yl we obtain from 
(2.9) the Biot--Savart equation, widely used in the theory of wings and blade rows. A repre- 
sentation in the form (2.9) for this particular case is obtained with the help of Green's 
equation in [5]. 

3. Let us apply the results obtained to the case when S is a blade of an annular blade 
row and consists of a part of a helical surface defined by the equations 

x = 0/(0,~, y = r cos 0, z = r s in  0, r t  ~ r ~ r ~ ,  - -  00 .~ J 0 ~ 00, ( 3 .  l )  

w h e r e  ~ ,  = ~c/vr c i s  t h e  h a l f - c h o r d  o f  t h e  b l a d e  i n  p r o j e c t i o n  o n t o  t h e  x a x i s ;  r t  a n d  r 2  
a r e  t h e  r a d i i  o f  t h e  i n n e r  a n d  o u t e r  c y l i n d e r s  n o r m a l i z e d  t o  c ;  0o i s  t h e  a n g u l a r  c o o r d i n a t e  
o f  t h e  t r a i l i n g  e d g e  o f  t h e  b l a d e .  The d i r e c t i o n  c o s i n e s  o f  t h e  n o r m a l  t o  t h e  s u r f a c e  a r e  

n~ =: rco,~/d, n y = s i n  Old, n~=--cos Old 

a n d  a n  e l e m e n t  o f  a r e a  i s  dS = dd~dp w h e r e  d * =  t § r2~,~ 2 

L e t  u s  c o n s i d e r  t h e  l i m i t i n g  c a s e  when t h e  n u m b e r  o f  b l a d e s  i s  N § 0% r .  + 0% a n d  t h e  
hub r a t i o  h = r t / r 2  t e n d s  t o w a r d  u n i t y ~  We c a n  show t h a t  i n  t h i s  c a s e  Eq .  ( 2 . 9 )  d e s c r i b e s  
a c e r t a i n  t w o - d i m e n s i o n a l  g a s  f l o w  t h r o u g h  t h e  b l a d e  row~ From p h y s i c a l  c o n s i d e r a t i o n s  i t  
i s  c l e a r  t h a t  t h e  v e l o c i t y  f i e l d  i n  t h e  r a d i a l  d i r e c t i o n  d o e s  n o t  v a r y  a s  h § 1 .  T h e r e f o r e ,  
t h e  v e c t o r  y h a d  o n l y  a r a d i a l  c o m p o n e n t  Yr and  f r e e  v o r t i c e s  c o m i n g  o f f  i n t o  t h e  w a k e  b e -  
h i n d  t h e  b l a d e  a r e  a b s e n t .  Then  f o r  t h e  a x i a l  and  c i r c u l a r  v e l o c i t y  c o m p o n e n t s  we o b t a i n  
f r o m  ( 2 . 9 )  

1 r2  ,,+: ~247 
, o+ ---if- ~ o , p ,  
- -1  r 1 

1 r 2  

Yl [ - )~176 v o =  ?~ d oa c o s ( O - - q ; )  ~- d c o s ( O - - r  dpd+. ( 3 . 3 )  
-1 r 1 o~ ~ ~ rd "~  

The fundamental solution of Eq. 
I, 2) has the form [3] 

G(x y) =-~-Re 2_~ 

oo ~'om 

= 1  

(2.1) for the region between the cylinders r = r i (i = 

(3.4) 

229 



where  

E ~  (x, y) = e ~ ~ *  (~- ~) ~ ; Go = N 

+ x - - ~ ) ; f l ~ = "  ~ ~ ~ ~  ~ ~ = n~--k  M ~,rJ~ (k nN)i  X ~ - -  

lkm a r e  t h e  r o o t s  o f  t he  s y s t e m  o f  e q u a t i o n s  Rk ~( t )  = 0,  Rk~( th )  = 0,  Rk ( r )  = A k [ J k ( r ) Y k ' -  
(Xh) -- Jk'(Xh)Yk(r)] ; A k is a normalizing factor; a prime denotes differentiation; Jk and Yk 
are first- and second-order Bessel functions, respectively. 

In the case under consideration k>>l, so that [6] %km ~ k regardless of m and ~km = 
k8~/8. Here 8~ = 1 -- M~ and M~ is the Mach number at the end of the blade (r = r~). Conse- 
quently, the functions Ekm do not depend on the index m, and it will be omitted from now on. 
Since the blades differ little from stream surfaces of the undisturbed motion, the stagger 
6 = ~(r) of the blade row in a cross section r = const can be determined from the relation 

tg~ = ~ . r .  ( 3 . 5 )  

Substituting (3.4) and(3.5) into (3.2) and introducing the notation 

we find 

r 2 

r 2  

r I 

vx = ~ ~ qhmRk ~k. ImE~ (x, y) d~ 
- -1  n '  m ' ~ ' l  

1 

M~N 

/ ' t 
To c a l c u l a t e  t h e  a e r o d y n a m i c  c h a r a c t e r i s t i c s  o f  b l a d e  rows i t  i s  s u f f i c i e n t  t o  know t h e  

v e l o c i t y  f i e l d  n e a r  a b l a d e .  I n  t h i s  c a s e  t h e  v a l u e  o f  Ix -- ~ [ i s  f i n i t e ,  w h i l e  lom § ~ as  
h § I, so that the penultimate term in (3.6) tends toward zero. 

In connection with the fact that qkm and Pkm can be treated as coefficients of expan- 
sions of the functions 

" ( M~ ) 
p"cos5 - ~  t g ~ 6 - 1  ann pcos~" 6 ( t  +c~ 

in Fourier--Bessel series, we can write 

ms = "2n~2r2 cos 6 \ - ~  tg~8 - -  t 7 ,  (~, r) I m E , , d ~  - -  
- -1  n ~ l  

MZN {! q- cos%) tg6 [ m ~2 
2n~2: rcos6 ~ T r ( ~ , r )  M2co.r2+ s i g n ( ~ - - x )  Eh + - ~ [ s i g a ( ~ - - x ) - - t }  d~. 

- -1  

L e t  us assume t h a t  i n  t h e  l i m i t i n g  t r a n s i t i o n  t h e  q u a n t i t y  z = N/2~ra  r e m a i n s  c o n s t a n t  
w h i l e  t h e  a n g l e  6 a p p r o a c h e s  i t s  v a l u e  a t  r = r a .  We i n t r o d u c e  t h e  new v a r i a b l e  y -- r a0  and 
the notation 

X = (2n~2~/~) (~--  x), Y = 2 ~  [y + (i/~ ~) (M2x --  ~) tg 6]. 
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Then, if we use the expressions [7] 

t ~in 0 t sh x j 
e - ' X s i n  nO = 2 ch z - -  co~ O' e-r 'Xc~ h ~'----cos 0 

n~l 7 ~1 

for x > 0, we can represent Eq. (3.2) in the form 

I 

--I 

]~[2,~.,(~-}" CO'e-zL~) ~ (~ f "r ( S].' X ~td~" 
" ~ J  ,,,'t, f - - : "  ~os r  , --) 

( 3 . 7 )  

Using an analogous procedure, we find 

I ] 

T f '}Ir ( shX _ i ) d ~  . M2Tsin2~ f" Tr ~ siIiYyd 
7 . ~ c h X - - c o s Y  - 4 ~  . cos~ c h X - - c o s  ~" [.'t; 7 (3.8) 

Equations (3.7) and (3.8) for M = 0 do not differ from the corresponding equations given 
by the plane theory. Thus, in the case of an uncompressed fluid as N + =, r2 § ~, and h + 1 
the model of plane flow is a sufficiently good approximation for calculating the aerodynamic 
characteristics of an axial compressor. 

In the case of a compressed stream additional terms containing M 2 and functions depend- 
ing on the stagger of the blade row at the periphery appear, and hence one cannot obtain the 
equivalent flow of an incompressible fluid through the blade row using a Prandtl--Glauert 
transformation. This is connected with the fact that Eq. (2.1) is not reduced to the Lap- 
lace equation which would be obtained in the plane theory in the coordinate system being used. 
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